Hannes Kneiding, Ruslan Lukin, David Balcells (2022)
Highlighted by Jan Jensen
This representation is combined with two graph-NN methods (MPNN and MXMNet) and trained against DFT properties such as the HOMO-LUMO gap. The results are quite good and generally better than radius graph methods such as SchNet. However, one should keep in mind that both the descriptors and properties are computed with DFT.
Given that the computational cost of the descriptors is basically the same as the property of interest, this is a proof-of-concept paper that shows the utility of the general idea. However, it remains to be seen whether cheaper descriptors (e.g. based on semi-empirical calculations) result in similar performance. However, given the current sparcity of ML tools for TMCs this is a very welcome advance.
This work is licensed under a Creative Commons Attribution 4.0 International License.