Frank Jensen (2017)
Having highlighted this paper it is only right that I highlight Frank Jensen's response. To recap, the previous study used wavelets to compute benchmark energies for PBE and PBE0 functionals and showed that even aug-cc-pV5Z failed to reach chemical accuracy for some atomization energies.
In this paper Jensen shows that this problem goes away when one uses basis sets specifically designed for DFT calculations. At the pentuple-zeta level the maximum errors are reduced by factors of 5 and 10 for segmented contracted and uncontracted basis sets, respectively and the MAE for atomization energies are well below 1 kcal/mol.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Having highlighted this paper it is only right that I highlight Frank Jensen's response. To recap, the previous study used wavelets to compute benchmark energies for PBE and PBE0 functionals and showed that even aug-cc-pV5Z failed to reach chemical accuracy for some atomization energies.
In this paper Jensen shows that this problem goes away when one uses basis sets specifically designed for DFT calculations. At the pentuple-zeta level the maximum errors are reduced by factors of 5 and 10 for segmented contracted and uncontracted basis sets, respectively and the MAE for atomization energies are well below 1 kcal/mol.
This work is licensed under a Creative Commons Attribution 4.0 International License.
No comments:
Post a Comment