Harriman, G., Greenwood, J., Bhat, S., Huang, X., Wang, R., Paul, D., Tong, L., Saha, A.K., Westlin, W.F., Kapeller, R. and Harwood, H.J., (2016)
Contributed by Jan Jensen
This paper describes the development of ND-630 (aka NDI-010976) which is currently in Phase 2 clinical trials and could help cure a serious liver disease called non-alcoholic steatohepatitis and potentially other diseases. I am highlighting it here because computational chemistry had a lot to do with its discovery both directly and indirectly.
The development of ND-630 is spearheaded by Nimbus Therapeutics, which is basically an off-shoot of Schrödinger, i.e. a company that uses Schrödinger's software to discover new drugs. One of the co-founders (at the VC company Atlas) writes:
Here's how they discovered ND-630 according to the article. They started with the crystal structure of Acetyl-CoA carboxylase with the natural product Soraphen A bound and identified two pockets with high-energy hydration sites using SiteMap and then WaterMap. Then they did a structure-based virtual screen of commercially available compounds using GlideXP and kept only compounds that hit the high-energy hydration sites in both pockets. Soraphen A and these compounds where then used to build two pharmacophore models, which, in turn, where used for a ligand-based virtual screen with hits further refined with GlideXP. "A combined virtual hit-list of a few thousand compounds was clustered to maximize diversity, and 300 representatives were chosen after visualization of the poses. This process led to the identification of ND-022 ... Subsequently, lead optimization proceeded rapidly, guided by WaterMap and Prime/MM-GBSA v. 2.2 estimates of binding free energy." Which finally led to ND-630.
So not exactly Derek Lowe's unicorn dream come true, but I think it's fair to call this computer aided drug design.
Thanks to Victor Guallar for bringing the article to my attention.
This work is licensed under a Creative Commons Attribution 4.0
Contributed by Jan Jensen
This paper describes the development of ND-630 (aka NDI-010976) which is currently in Phase 2 clinical trials and could help cure a serious liver disease called non-alcoholic steatohepatitis and potentially other diseases. I am highlighting it here because computational chemistry had a lot to do with its discovery both directly and indirectly.
The development of ND-630 is spearheaded by Nimbus Therapeutics, which is basically an off-shoot of Schrödinger, i.e. a company that uses Schrödinger's software to discover new drugs. One of the co-founders (at the VC company Atlas) writes:
Back in the spring of 2009, Atlas (where I'm a partner) founded the company with Schrödinger, a leading computational chemistry software company, after almost a year-long dialogue between myself and Ramy Farid, Schrödinger’s president. At this time, Schrödinger was launching a novel computational tool called WaterMap, an apt name for a technology that maps the energetics of water sites at the receptor-ligand interface, providing a potential roadmap for efficient ligand-receptor interactions. As this cutting-edge technology catalyzed some of our initial thinking, we called it Project Troubled Water Inc (PTW) for the first year or so.So in a way, this is also highlight of this article. To summarise: the company was founded because these people believed in computational chemistry as the main driving force behind drug discovery. Did the success of ND-630 prove them right?
Here's how they discovered ND-630 according to the article. They started with the crystal structure of Acetyl-CoA carboxylase with the natural product Soraphen A bound and identified two pockets with high-energy hydration sites using SiteMap and then WaterMap. Then they did a structure-based virtual screen of commercially available compounds using GlideXP and kept only compounds that hit the high-energy hydration sites in both pockets. Soraphen A and these compounds where then used to build two pharmacophore models, which, in turn, where used for a ligand-based virtual screen with hits further refined with GlideXP. "A combined virtual hit-list of a few thousand compounds was clustered to maximize diversity, and 300 representatives were chosen after visualization of the poses. This process led to the identification of ND-022 ... Subsequently, lead optimization proceeded rapidly, guided by WaterMap and Prime/MM-GBSA v. 2.2 estimates of binding free energy." Which finally led to ND-630.
So not exactly Derek Lowe's unicorn dream come true, but I think it's fair to call this computer aided drug design.
Thanks to Victor Guallar for bringing the article to my attention.
This work is licensed under a Creative Commons Attribution 4.0
No comments:
Post a Comment